If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4y^2+8y-2=0
a = 4; b = 8; c = -2;
Δ = b2-4ac
Δ = 82-4·4·(-2)
Δ = 96
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{96}=\sqrt{16*6}=\sqrt{16}*\sqrt{6}=4\sqrt{6}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-4\sqrt{6}}{2*4}=\frac{-8-4\sqrt{6}}{8} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+4\sqrt{6}}{2*4}=\frac{-8+4\sqrt{6}}{8} $
| 15.9s-33=5.16 | | 3(2x+8)+12=-12+2x | | (x+2)/x+x=74/x | | 8+3n=12 | | I2x-7I=7-2x | | 2.5/3.1=x/2.5 | | 8−–3n=14 | | 11-4p=5 | | 3(p-5)=48 | | 22r-20=200 | | a(-4)=40(-4)^3 | | 8=2y−2 | | a(-4)=40-(-4)^3 | | 3s−4=11 | | –2+34j+12j=2j | | 7^x=600 | | e(7)=-(7)^2-9(7) | | 34+x=7x | | 4.5x+x−3.1=1.5x5+.9 | | 4.7(9.3x+2.2)=59.9 | | .4x=10.4 | | L=14/w | | 3r+6=-6+5r | | 3r+6=-6+5 | | x+(=17) | | L=w+13 | | 3x2-6x-26=-4 | | 2(3x−5)=2 | | 2.5t+100=25 | | 6.25t=25 | | 27=34-x | | 20+o=4 |